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Abstract 80 

Application Containers are slowly finding adoption in enterprise IT infrastructures. Security 81 
guidelines and countermeasures have been proposed to address security concerns associated with 82 
the deployment of application container platforms. To assess the effectiveness of the security 83 
solutions implemented based on these recommendations, it is necessary to analyze them and 84 
outline the security assurance requirements they must satisfy to meet their intended objectives. 85 
This is the contribution of this document. The focus is on application containers on a Linux 86 
platform. 87 
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Executive Summary 111 

Application containers are now slowly finding adoption in production environments due to the 112 
following advantages: short development and deployment cycle, resource efficiency through 113 
lightweight virtualization, and availability of tools for automating the processes involved. At the 114 
same time, security concerns are dictating the pace of adoption. To address these concerns, 115 
security guidelines and countermeasures have been proposed by NIST through the Application 116 
Container Security Guide (NIST Special Publication 800-190).  117 

The Application Security Guide identified security threats to the components of the platform 118 
hosting the containers and related artifacts involved in building containers and storing them prior 119 
to launch. Taking into consideration the overall security implications for the entire ecosystem 120 
involving containers, the document also provided security countermeasures for and through six 121 
entities including Hardware, Host OS, Container Runtime, Image, Registry and Orchestrator. 122 

To carry out these recommendations in the form of countermeasures, one or more security 123 
solution are needed. In order for these security solutions to effectively meet their security 124 
objectives, it is necessary to analyze those security solutions and detail the metrics they must 125 
satisfy in the form of security assurance requirements. This is the objective and contribution of 126 
this document. 127 

Linux and its various distributions form the predominant host OS component of the deployed 128 
container platforms. Since they are open-source products, sufficient security related information 129 
is available to analyze the security solutions that can be configured using features provided by 130 
Linux. Hence the focus of this document is on security assurance requirements for security 131 
solutions for application containers hosted on Linux. The target audience includes system 132 
security architects and administrators who are responsible for the actual design and deployment 133 
of security solutions in enterprise infrastructures hosting containerized hosts. 134 
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1 Introduction 189 

Application containers are now slowly finding adoption in production environments due to the 190 
following advantages: short development and deployment cycle, resource efficiency through 191 
lightweight virtualization, and availability of tools for automating the processes involved. To 192 
address the security concerns in these environments, the Application Container Security Guide 193 
(NIST Special Publication 800-190) [1] (referred to in the rest of this document as Container 194 
Security Guide) identified security threats to the components of the platform hosting the 195 
containers as well as related artifacts involved in building containers and storing them prior to 196 
launch. Taking into consideration the overall security implications for the entire ecosystem 197 
involving containers, the document also provided security countermeasures for and through six 198 
entities including Hardware, Host OS, Container Runtime, Image, Registry and Orchestrator. 199 

To implement these countermeasures, one or more security solutions are needed. This document 200 
discusses potential security solutions that provide the functionality necessary in countermeasures 201 
and the kind of security assurance requirements each should satisfy. These security solutions can 202 
be broadly classified as: 203 

(a) Hardware-based root of trust providing integrity for boot process  204 

(b) Configuration options using host OS kernel features and kernel loadable modules  205 

(c) Protection measures for building and storing container images 206 

(d) Configuration options in Orchestrator tools used for rolling out a production 207 
infrastructure that involves multiple containers and multiple hosts 208 

 209 
The purpose of this document is to examine each of the security solutions in the context of the 210 
security objectives they are designed to meet and to develop assurance requirements that they 211 
should satisfy in order to be effective. The host OS considered is Linux due to the following:  212 

(a) Ubiquitous adoption in container stacks  213 

(b) Linux distributions are open-source and allow for sufficient security related information 214 
to be made publicly available 215 

 216 
1.1 Scope of the Document 217 

The functional architecture diagram of a container technology stack is shown in figure 1. In this 218 
diagram, the stack is comprised of the Physical Host (or VM), Container OS (which we will refer 219 
to as Host OS in this document), Container Runtime, and the multiple containers. Additionally, 220 
tasks such as creating a virtual network linking containers within and across container hosts 221 
(Container Networking), creating clusters of container hosts (Container Cluster Management), 222 
creating pathway programs to identify and discover a specific container providing a particular 223 
service (Service Discovery), scheduling of containers across a cluster (Container Scheduling), 224 
and scheduling of specific business applications within various containers (Application 225 
Scheduling) that are all performed by multiple tools are incorporated under the umbrella of an 226 
Orchestrator software. Before actually launching them as containers on various container hosts, 227 
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templates of components that constitute a container called Container Image are created using 228 
various DevOps Tools. These container images are stored in a container registry (Image 229 
Management) and are then pulled into container hosts and launched as containers using 230 
Container Runtime tools. The container runtime also provides the interfaces for configuring host 231 
OS parameters and settings associated with kernel-loadable modules to enable secure 232 
deployment of various containers.  233 

 234 

Figure 1 – Container Technology Stack 235 

 236 
• As depicted in figure 1, the security functional layer spans all functional layers of the 237 

container technology stack. The security solutions covering these layers, however, must 238 
be implemented through the following components: 239 

(a) Physical Host (i.e., hardware, since container hosting on VMs is out of scope for 240 
this document) 241 

(b) Container OS (Host OS) interfaces 242 

(c) Container Runtime interfaces 243 

(d) Image Management and Registry Interfaces 244 

(e) Orchestrator Interfaces 245 

The containers running in the container stack can either be system containers or application 246 
containers. A container that behaves like a full OS and runs programs such as sshd (secure 247 
session establishment) and syslogd (logging capability) is called a system container, while one 248 
that runs only an application is called an application container [2]. This document focuses on 249 
application containers. Before analyzing the security solutions and identifying the assurance 250 
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requirements they should satisfy, it is necessary to state the execution model of the application 251 
containers and the assumed attack model. First, the application is run within a container as a 252 
single operating system process. The container has a copy of the application code itself as well as 253 
the software stack (consisting of binaries and libraries) [3]. In most cases, this stack can be 254 
assembled using some type of library system, avoiding the need for the developer to build and 255 
configure the stack from scratch. These quickly assembled stacks are given different names in 256 
different container product offerings (e.g., buildpacks, cartridges, etc.). There are stacks for 257 
many of the popular programming language runtimes such as Java, PHP, Node.js, and Ruby. For 258 
specialized applications, developers can create their own customized stack. The deployment 259 
model in a container architecture may involve running copies of the same application in parallel 260 
with separate containers, even those spread across different container hosts. In this scenario, the 261 
infrastructure may have a mechanism to distribute incoming requests across all instances of the 262 
same application using some form of load balancer.  263 

The attack model assumed here is that the vulnerability in the application code of the container 264 
or its faulty configuration (e.g., the container is configured to run in privileged mode) has been 265 
exploited by an attacker to take control of and compromise the privilege code in container 266 
runtime and host OS kernel where the latter is trusted by the application code in the container to 267 
provide some protection guarantees such as process isolation [4]. An example of such an attack 268 
is the replaying, recording, modifying, and dropping of a network packet or a file system access. 269 
The security solutions discussed in this document are intended to protect the container runtime 270 
and host OS against these types of attacks. Solutions to address the inherent insecure 271 
characteristics of the application code itself, such as programming bugs, design flaws or 272 
execution models, are beyond the scope of this document.  273 

1.2 Document Structure 274 

The remainder of this document is organized into the following sections and appendices: 275 

 Section 2 provides an overview of the functions of various Linux kernel features 276 
(Namespaces, Cgroups, Capabilities) and kernel loadable modules in providing security for 277 
the containerized stack; 278 

 Section 3 discusses hardware-based security solutions for container environments; 279 

 Section 4 outlines host OS protection measures and their associated assurance requirements; 280 

 Section 5 presents, in detail, several container runtime configuration solutions that guarantee 281 
container isolation for artifacts such as processes, filesystems, IPC, and networks. It also 282 
presents solutions for limiting resources and ensuring least privilege. All solutions are 283 
analyzed, and a set of assurance requirements that must be satisfied are presented; 284 

 Section 6 defines assurance requirements for building and maintaining container images; 285 

 Section 7 briefly discusses assurance requirements for container registry protection; 286 

 Section 8 outlines basic security assurance requirements for Orchestration tools; 287 

 Section 9 identifies some undesirable side effects of some security solutions and the need to 288 
exercise caution in the use of such solutions; 289 
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 Section 10 summarizes the various security solution areas that were covered in the document; 290 

 Appendix A provides the definition for acronyms used in the document; and 291 

 Appendix B contains a list of references. 292 

 293 
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2 Security Solutions for Linux Application Container Stack 294 

In section 1.1, the host OS (in this context, Linux) interfaces were listed as mechanisms for 295 
implementing security solutions for a container stack. There are two types of interfaces: Linux 296 
kernel interfaces and Kernel Loadable Module (or Linux Security Module or LSM) interfaces. 297 
The Linux kernel features associated with the former type of interfaces are: Namespaces, 298 
Cgroups, and Capabilities. Out of these, the Namespaces and Cgroups kernel features provide 299 
isolation of processes running on top of the host OS and can be the driving features for 300 
development of the concept of containers. The salient functions of Linux kernel features and 301 
kernel-loadable module features are briefly described in the following sections to provide context 302 
for the security configurations and solutions analyzed in the subsequent sections. 303 

2.1 Linux Kernel Feature – Namespaces 304 

Namespaces divide the identifier tables and other structures associated with kernel global 305 
resources into separate instances. These partition filesystems, processes, users, network stacks, 306 
Inter-process communication (IPC) objects, host names, and other components into separate 307 
pieces. For example, each filesystem namespace has its own root directory and mount table [2]. 308 
These distinct namespaces can then be bundled in any frequency or combination to provide a 309 
unique view of resources for each container and subsequent accessibility to them. The restricted 310 
view of resources for a process within a container can be extended to a child process. 311 
Configuration capabilities, such as remapped root file systems and virtual network devices, are 312 
some of the security solutions that can be enabled using the Namespaces feature. The assurance 313 
of a security solution based on namespaces depends on the methods used to enforce namespace 314 
isolation, which in turn depends on the kind of metadata associated with each namespace that 315 
implements the appropriate access control.  316 

The namespace concept has expanded into a general framework for isolating a range of kernel 317 
global resources, the former scope of which was system-wide. Thus, the associated API has also 318 
grown to include several system calls. However, there are still some resources that are not 319 
namespace-aware (e.g., devices).  320 

2.2 Linux Kernel Feature – Cgroups 321 

Control Groups (Cgroups) are a kernel mechanism for specifying and enforcing hardware 322 
resource limits and access controls to a process or a group of processes. Their goal is to prevent a 323 
process from hogging all available resources and starving other processes and containers on the 324 
host. Thus, Cgroups isolate and limit a given resource over a group of processes to control 325 
performance or security. Controlled resources include CPU shares, RAM, network bandwidth, 326 
and disk I/O [5]. It can also be used for task control. 327 

The security protection provided by Cgroups are: 328 

(a) Preventing Denial-of-Service Attacks: It can provide protection against denial-of-service 329 
attacks preventing situations such as runaway containers by using features such as task 330 
freezing via SIGSTOP, setting limits on process ID (PID) using PID Cgroup to restrict 331 
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the maximum number of processes per user, and specifying network control parameters 332 
such as buffer limits and traffic priority levels (enforced by iptables). 333 

(b) Device Integrity Protection: It can restrict access to devices using mandatory access 334 
control (MAC) or using a feature that allows the specification a device whitelist. 335 

The configuration of Cgroups is enabled by mounting a special Cgroup virtual filesystem 336 
(pseudo-filesystem) similar to /proc or /sys that allows viewing of the state of namespaces and 337 
controls. The vulnerability of this mechanism is that attacks, such as unmounting or mounting-338 
over, can invalidate the resource limits set by Cgroups configurations. Cgroups can be 339 
configured and managed outside of the container management frameworks since it is a 340 
configuration feature purely associated with the kernel of the host OS. 341 

2.3 Linux Kernel Feature – Capabilities 342 

The Capabilities feature in Linux kernel helps to partition the extensive set of privileges 343 
available to root so that processes (in our context, containers) can be allocated just the privileges 344 
needed to perform a specific function. Prior to the introduction of the Capabilities feature, a 345 
process that needs to open network sockets must be run as a root to perform this single function. 346 
This meant that a bug in the corresponding binary, such as /bin/ping, could allow attackers to 347 
gain all privileges for the root on the system [6]. By enabling the capability CAP_NET_RAW, a 348 
version of ping can be created that has only the privileges enabled by this capability rather than 349 
full root privileges. The security consequence of this is that the potential attackers would gain 350 
significantly fewer privileges from exploiting the ping utility. 351 
 352 
2.4 Kernel Loadable Modules (or Linux Security Module or LSM) 353 

Kernel Loadable Modules, as the name implies, are modules loaded into the Linux kernel and 354 
provide security functions. Examples include SELinux, AppArmor, and Seccomp. SELinux and 355 
AppArmor enable specification and enforcement of mandatory access control (MAC) on 356 
processes and objects. Seccomp enables specification of system call restrictions, and thus 357 
reduces the Linux kernel attack surface. 358 
 359 
2.5 Application Container Security Configuration Process 360 

The Linux host OS kernel features—such as namespaces, Cgroups, and Capabilities—can be 361 
leveraged to create a secure configuration for each container. Many container runtime products 362 
offer APIs to create secure configurations for containers within a host. A typical container 363 
runtime, generally accessed through a client, contains a library that directly makes the syscalls 364 
and performs work on behalf of its client such as creating the required kernel namespaces, 365 
Cgroups, and management of capabilities. Other administrative functions that may have security 366 
implications (e.g., lack of availability due to uneven workloads) such as distribution of 367 
containers across hosts and the creation of host clusters are managed by a set of tools called 368 
Orchestrators. 369 
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3 Hardware-based Security Solutions for Containers 370 

The Container Security Guide, under the topic of Hardware Countermeasures, recommends a 371 
trusted computing model that starts with the measured/secured boot, provides a verified system 372 
platform, and builds a chain of trust rooted in hardware. This chain of trust then extends to 373 
bootloaders, the OS kernel, and the OS components to enable cryptographic verification of boot 374 
mechanisms, system images, container runtimes, and container images. The technical solutions 375 
for implementing a trusted computing module (TPM) for a containerized host are outlined in [7]. 376 
Two such approaches are discussed in this document as well as the security assurance required 377 
for each solution. 378 

Both approaches involve a combination of hardware-based, or physical, TPM and a software-379 
based vTPM (virtual TPM). The difference between the two approaches is in the location where 380 
vTPM is placed in the container stack. The security solution where vTPM is placed in the Linux 381 
kernel is discussed in section 3.1, and the solution where vTPM is placed in a dedicated 382 
container is the topic of section 3.2. 383 

Building a TPM architecture is not the only type of approach for providing trust rooted in 384 
hardware for the container stack. Another type of approach that has been proposed is to leverage 385 
the trusted execution support of some CPU architectures to protect processes running in a 386 
container against attacks from sources inside the same container stack. This includes privileged 387 
software in the same stack such as the container runtime and host OS kernel [8]. A mechanism or 388 
security solution based on this type of approach is discussed and analyzed in section 3.3. 389 

3.1 vTPM in the host OS Kernel – Security Assurance Requirements 390 

In an architectural approach suggested in [7], a software-based module called vTPM (virtual 391 
TPM) is placed into the OS kernel. To make this module available to several containers, it needs 392 
to be virtualized. This is accomplished using a kernel module that provides an arbitrary number 393 
of software-based vTPMs, which are exposed to containers through the usual mechanisms and 394 
present a character device type interface to the container userspace. This functionality can be 395 
implemented by having the container runtime (or container manager) ask the host OS kernel to 396 
create a new vTPM and assign the virtual device to a container. The vTPMs are linked to the 397 
TPM implemented in the hardware platform (referred to as “physical TPM”) that hosts the 398 
container stack. The schematic diagram of this architectural approach is illustrated in figure 2. 399 

The security assurance requirements for the above discussed architectural approach can be 400 
looked at for the following scenarios: 401 

The host OS is completely trusted:  The trust-in-host OS can be established by extending the root 402 
of trust from the hardware using the hardware-based, or physical, TPM. Since the host OS is 403 
trusted to prevent unauthorized access by containers and processes, it can also be trusted to 404 
prevent unauthorized access to the in-kernel vTPM. Moreover, there is the assurance that 405 
containers cannot modify the host kernel by loading new modules or by exploiting vulnerabilities 406 
in the kernel. Containers can therefore reliably attest to their own state by using the hash extend 407 
feature of the vTPM. 408 
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 409 

Figure 2 – vTPM Implemented in a Kernel Module 410 

The host OS is not completely trusted, and independent trust is needed on vTPM: To implement 411 
trust on vTPM, a scheme using the same mechanism used for establishing hardware TPM 412 
(physical TPM) trust has been referred to in [7]. In the physical TPM, the hardware platform 413 
provider signs an endorsement key (EK) stating that the TPM is trustworthy. This is then 414 
extended by giving each vTPM instance its own endorsement key and deploying protocols for 415 
signing the endorsement keys of vTPMs using of the hardware-based TPM. 416 

3.2 vTPM in a dedicated Container – Security Assurance Requirements 417 

The software-based vTPM with the same functionality described in section 3.1 is built and 418 
hosted in a dedicated container (referred to as vTPM management container). The schematic 419 
diagram of this architectural approach is given in figure 3. This vTPM has two primary features: 420 

(a) Access to hardware-based (physical) TPM 421 

(b) Exposes the vTPM interface to other containers through a communication channel, which 422 
can be a local UNIX domain socket or another IPC mechanism. If the IPC mechanism is 423 
employed, the container using the vTPM service requires an additional piece of software 424 
(denoted as “adapter” in figure 3) that presents the IPC interface as a standard character 425 
device. In the container that is hosting the vTPM, a daemon will process requests from 426 
other containers instead of a kernel module as it was in the previous case. 427 
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 428 

Figure 3 – vTPM located in a dedicated Container 429 

The security assurance provided by this architectural approach is the same as the one provided 430 
by the host OS in the container stack. A host OS, such as Linux, provides isolation between 431 
processes belonging to different containers through the Namespaces feature. If this functionality 432 
works correctly, no process belonging to a different container can access the state of the vTPM 433 
deployed in a dedicated container. In other words, the security of this implementation is 434 
jeopardized only in the event of a container escape attack. Still, this approach provides less 435 
protection than the approach in section 3.1 (vTPM in the host Kernel) since the kernel is more 436 
reliable in limiting the kind of access it exposes to the userspace. 437 

3.3 Leveraging Trusted Execution Support of Hardware 438 

In 2015, Intel released the Software Guard eXtensions (SGX) [8] for their CPUs, which provided 439 
the hardware mechanism for protecting user-level software from privileged system software 440 
using the concept of secure enclaves. An enclave page cache (EPC) is a region of protected 441 
physical memory where application code and data reside and are protected by CPU access 442 
controls. When code and data in EPC pages are moved to DRAM, they are instantaneously 443 
encrypted using an on-chip memory encryption engine (MEE) and then decrypted when they are 444 
transferred from DRAM to EPC pages. The integrity of the enclave memory itself is also 445 
protected by mechanisms that detect memory modifications and rollbacks. Thus, enclaves are 446 
trusted execution environments provided by SGX to applications residing in the container.447 
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4 Assurance Requirements for Host OS Protection 448 

4.1 Requirements for Generic Host OS Protection  449 

Installing a container-specific OS (as opposed to a generic OS distribution), keeping OS versions 450 
up-to-date and patched, logging features that can track anomalous accesses to the OS, and 451 
executing privileged operations form the crux of Host OS countermeasures in the Container 452 
Security Guide. In addition to the above countermeasures, it is also a good OS security practice 453 
to disable all unused interfaces (Serial or Proprietary) on the host and minimize the user and 454 
administrative accounts and groups. In addition to these, there are Linux-specific patches, such 455 
as grsecurity [9] and PaX [10], that are available for Linux distributions. All measures combined 456 
should provide the following security assurance for the host OS:  457 

(a) Prevent manipulation of program execution by modifying memory (e.g., buffer overflow 458 
attacks) 459 

(b) Prevent attempts to reroute code to existing procedures (e.g., system calls in common 460 
libraries) 461 

 462 
4.2 Assurance Requirements for Host OS Protection for Container Escape 463 

The host OS should be protected to mitigate threats that result from container escape or breakout, 464 
and all containers should be protected from other containers on the host. There are many 465 
solutions available in Linux environments that enable these protections, but the three solutions 466 
analyzed in this document are SELinux, AppArmor, and Seccomp, all of which utilize kernel-467 
loadable modules (referred to using the acronym LKM, or Linux Kernel Module). SELinux, or 468 
Security Enhanced Linux, can be used to assign labels (e.g., type) and categories to processes 469 
and objects (e.g., files, sockets) and specify access restrictions (Mandatory Access Control or 470 
MAC) between resources belonging to certain combinations of labels and categories. For 471 
example, a specific SELinux label can be applied to a container to enforce a security policy (e.g., 472 
a container hosting a Webserver can only open ports 80 or 443) [6]. AppArmor is another LKM 473 
product that helps enforce mandatory access control policies by applying profiles to processes 474 
that enable restriction of  privileges they have at the level of Linux capabilities and file access. 475 
The controls are thus data-centric and are at a coarser level of granularity compared to SELinux. 476 
SECure COMPuting (Seccomp) is a module that can define and enforce an access control 477 
method that enables specification of the number of system calls available for an application 478 
within a container to interface with the kernel. Limiting system calls provides a restricted 479 
execution environment and thus reduces the kernel attack surface. The allowed list (i.e., 480 
whitelist) and prohibited list (i.e., blacklist) of system calls for a process are set up using the 481 
syscall filter [11].  482 

The overall goal of the kernel-loadable modules, or LKMs, described above is to provide another 483 
level of security checks on the access rights of processes and users beyond that provided by the 484 
standard file-level access control (discretionary access control, or DAC) in Linux [6]. This goal 485 
then drives the following security assurance requirements that need to be satisfied: 486 
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(a) A user authorized to run applications in the container should not be allowed access to the 487 
above described kernel-loadable modules 488 

(b) If using SELinux, the chcon utility used to label the files and parent folders should be 489 
used at the correct levels in the file system hierarchy such that it results in least privileges 490 

(c) If using Seccomp, both a syscall whitelist (a list of allowable calls) and a syscall blacklist 491 
(a list of prohibited calls) should be generated. The choice of syscalls in the whitelist for 492 
a container should be based on type of application(s) hosted in the container, deployment 493 
situation, and container size. The syscalls included in the blacklist are for high risk, 494 
possibly vulnerable, known dangerous, and explicitly disallowed ones [11]. Some 495 
examples in this category include syscalls that allow for loading kernel modules, 496 
rebooting, triggering mount operations, and other administrative calls. 497 

(d) If using Seccomp, the sandboxes created by seccomp filters must not allow the use of the 498 
ptrace command. If ptrace is allowed, the tracer can modify the process’s system call to 499 
bypass the filter and therefore call blocked or restricted system calls. 500 

(e) It should be possible to create container-specific profiles using a combination of 501 
configuration options provided by these security modules 502 

(f) A minimal configuration feature that should be available is one that allows for the 503 
partitioning of containers in the host to different security domains 504 

(g) It should prevent containers’ ability to mount/remount sensitive directories and/or 505 
specific system directories critical to security enforcement (Cgroups, procfs, sysfs) 506 

(h) It should be possible to create a security profile for the administrators of container 507 
runtime using a combination of the above features508 
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5 Assurance Requirements for Container Runtime Configuration 509 

As already described in section 2.5, all security configuration parameters for containers, except 510 
for those dealing with cluster management and scheduling, are set using APIs provided by 511 
container runtime. Although most of them involve Linux kernel features (Namespaces, Cgroups, 512 
Capabilities) and Linux kernel modules, these tasks have been included under this section since 513 
they are performed by the container runtime making syscalls to Linux host OS interfaces. The 514 
overall organization of this section is as follows: 515 

(a) Section 5.2 discusses configurations involving Linux’s Namespace feature, which 516 
provides isolation for various resources 517 

(b) Section 5.3 discusses configurations using the Cgroups feature, which is primarily 518 
utilized for setting resource limits and thus preventing denial of service attacks 519 

(c) Section 5.4 discusses configurations using the Capabilities feature, which enables the 520 
allocation of least privileges 521 

(d) Section 5.5 discusses the configurations for device isolation, which can be enabled using 522 
a combination of Cgroups and kernel-loadable MAC enforcement modules 523 

(e) Section 5.6 discusses configuration parameters that can be set at the time of launching the 524 
containers rather than being pre-configured using the functions discussed above 525 

Before analyzing these functions, the need for a configuration feature for the container runtime 526 
itself is outlined in section 5.1. 527 

5.1 Requirements for Secure Connection 528 

Container runtime module is implemented with a daemon that listens through a Unix socket and 529 
thus enables remote administration of the runtime. It is possible under certain circumstances for 530 
members in the administrative group to change the Unix socket to a TCP socket [10]. Any 531 
connection to this TCP socket can allow attackers to pull and run any container in privileged 532 
mode, thereby giving them root access to the host. The security assurance requirement for the 533 
TLS connection involves the encryption and authentication of both sides (container runtime 534 
module as well as the client tool used for remote administration) of the connection before 535 
establishing the TLS session. 536 

5.2 Requirements for Isolation-based Configurations 537 

5.2.1 Process Isolation for Containers 538 

Process Isolation is a core security requirement for containers to ensure the integrity of various 539 
applications running in different containers as well as in the host. A process isolation mechanism 540 
in a container environment should meet the following requirements [4]: 541 

(a) Ability to distinguish processes running in different containers from each other and from 542 
those running on the host 543 

(b) Limit cross-container process visibility 544 
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(c) Prevent certain type of attacks such as: 545 

(i.) A process running in one container influencing a process running in another 546 
container using interfaces provided by the OS for process management (e.g., 547 
signals and interrupts)  548 

(ii.)  A process running in one container and directly accessing the memory of a 549 
process running in another container by using special system calls (e.g., the 550 
ptrace() allows a debugger process to attach and monitor the memory of a 551 
debugged process) 552 

To provide process isolation, a Linux kernel feature called process id (PID) namespace is used. 553 
A PID namespace is a mechanism that groups processes and controls their ability to see (e.g., via 554 
proc pseudo-filesystem) and interact (e.g., sending signals) with one another. A PID namespace 555 
is created using clone() or unshare() system call and is associated with one or more containers. 556 
The first process carries the id PID1, and the identifiers for subsequent processes increases 557 
sequentially. Thus, the PID namespaces feature also provides PID virtualization. Two processes 558 
in different PID namespaces can have the same PID. 559 

5.2.2 Filesystem Isolation for Containers 560 

The goal of filesystem isolation is to prevent illegitimate access to filesystem objects from one 561 
container to another and from any container to the host. The filesystem is an OS interface that 562 
allows processes to store and share data as well as interact with one another. Access to data for a 563 
container application is determined by its access to file systems through the filesystem mount 564 
points. Therefore, access to data can be restricted by making the list of filesystem mount points 565 
visible and accessible to a container application. This is accomplished through the mount 566 
namespace. First, a named mount namespace is created along with a set of file system mount 567 
points. This mount namespace is then associated with a process that can only see and issue 568 
system calls such as mount ( ) or unmount ( ) on those mount points. It also operates on files that 569 
are within that mount namespace and accessible through those mount points. The following are 570 
the security solutions for filesystem isolation and their limitations: 571 

(a) All Linux-based OS virtualization solutions utilize a mount namespace that allows for the 572 
separation of mounts between the containers and the host. This is intended to facilitate 573 
customization of the environment visible to users and processes. This feature does not 574 
guarantee data isolation between the containers since containers inherit the view of 575 
filesystem mounts from their parent and can access all parts of the filesystem even though 576 
each container is created within a new mount namespace. 577 

(b) The typical solution for process filesystem access containment is by using the chroot ( ) 578 
system call, which binds a process to a subtree of the filesystem hierarchy. This allows a 579 
container to share resources with the host by mounting them within the subtree visible 580 
inside the container. However, this feature cannot provide the requisite protection in the 581 
presence of privileged processes (i.e., processes with the CAP_SYS_CHROOT 582 
privilege), which can escape the chroot jail due to the fact that the chroot ( ) system call 583 
only affects the pathname resolution. 584 

(c) A better protection for filesystem objects is provided by modifying the root filesystem for 585 
processes in a container as opposed to just modifying the root directory (which the chroot 586 
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( ) system call enables) [4]. This is enabled by the pivot_root ( ) call, which moves the 587 
mountpoint of the old root filesystem to a directory under the new root filesystem and 588 
puts the new root filesystem in its place. This provides filesystem level protection since 589 
the old root filesystem can be unmounted when it is carried out inside the mount 590 
namespace of the container, thus rendering the host root filesystem inaccessible for 591 
processes inside the container. 592 

(d) Another filesystem-level protection strategy is to disallow mounting and unmounting of 593 
filesystems for processes running inside a jail by default and enforce granular control of 594 
this privilege using options in the allow_mount* command. 595 

(e) Another mechanism to strengthen filesystem isolation is to designate a separate user 596 
namespace per container, which maps the user and group ids to a lesser privileged range 597 
of host UIDs and groups. 598 

Because of the limitation of each of the above security solutions, the assurance requirements for 599 
total filesystem-level protection involves a combination of configurations including mount 600 
namespace, chroot, pivot_root, and user namespace needed for:  601 

• Isolating mount points by mount namespace 602 
• Changing the root directory for each process using chrooot 603 
• Changing the root filesystem visible to each process (container) using pivot_root 604 
• Restricting user access scope using user namespace 605 

 606 
5.2.3 IPC Isolation for Containers 607 

Inter-process communication (IPC) isolation for containers means that processes in a container 608 
must be restricted to communicate via certain IPC primitives only within that same container. An 609 
IPC object (or associated mechanism) can be either a filesystem-based IPC object or non-610 
filesystem-based. Filesystem-based IPC objects, such as domain sockets and named pipes, can be 611 
isolated using a combination of mount namespace and pivot_root features (section 5.2.2 above) 612 
since they prevent processes from accessing filesystem paths outside of their own container.  613 

However, there are other IPC objects such as System V IPC objects, semaphore sets (arrays), 614 
shared memory segments, and message queues. These IPC objects can be isolated in Linux with 615 
the help of IPC namespaces that allow the creation of a completely disjointed set of IPC objects. 616 
Each IPC namespace has its own set of System V IPC identifiers and its own POSIX message 617 
queue filesystem. Objects created in an IPC namespace are visible to all other processes that are 618 
members of that namespace but are not visible to processes in other IPC namespaces. IPC objects 619 
accessible for a process can be listed using the ipcs command and removed using the ipcrm 620 
command. 621 
5.2.4 Network Isolation for Containers 622 

Network level isolation for containers is provided through the network namespace feature. For 623 
each network namespace that is created, a set of network devices, IP addresses, IP routing 624 
tables, /proc/net directory, and port numbers can be associated with it. Each container can have 625 
its own virtual network device and applications that bind to the per-namespace port number 626 
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space. Suitable routing rules in the host system can direct network packets to the network device 627 
associated with a specific container. It is therefore possible to have, for example, multiple 628 
containerized web servers on the same host system with each server bound to port 80 in its (per-629 
container) network namespace. 630 

Network connectivity is a core requirement for all production grade applications running on 631 
containers such as web apps and multi-tier apps. The containers can be connected using a logical 632 
IP network called the overlay network. The typical network configuration on a container 633 
platform (consisting of containers, container runtime, host OS and the physical host) involves 634 
creating a network bridge on the container host. Each container on a host is connected to that 635 
bridge. A router captures Ethernet packets from its bridge-connected interface in promiscuous 636 
mode, and captured packets are forwarded over the user datagram protocol (UDP) to router peers 637 
running on other container hosts. These UDP ”connections” are duplex, can traverse firewalls, 638 
and can be encrypted [12]. Each container is connected to the bridge using a layer 2 (link layer) 639 
virtualized network interface (VNI) with a valid Link Layer address or a Network Address 640 
Translation (NAT) for layer 3 connectivity. The Linux Layer 2 network isolation is based on the 641 
concept of Network Namespace, which allows for the creation of several networking stacks that 642 
provide a view of being completely independent of the containers [4].  643 

The simplest configuration for network isolation using layer 2 VNI involves defining a pair of 644 
virtually linked Ethernet (veth) interfaces. One of the interfaces is assigned to the same network 645 
namespace as the container and the other to the host namespace. A virtual link is then established 646 
between the two interfaces, thus connecting the container to physical networks. There are two 647 
options for enabling this link [4]: 648 

(a) Network Bridge Device: The veth interface and the host physical interface are connected 649 
using a virtual network bridge device. In this option, all container and host interfaces are 650 
attached to the same link layer bridge and thus receive all link layer traffic on the bridge. 651 

(b) Routing Tables: Another option is to utilize routing tables to forward the traffic between 652 
virtual network interface (to which the container is connected) and physical network 653 
interfaces (resident at the host). In this option, containers can communicate with each 654 
other only when a network route is explicitly provided. 655 

Security Analysis: The network isolation functionality provided by these two options forces a 656 
container process to use a designated virtual network segment or a designated network route 657 
(e.g., over a VPN connection). Between the two options, the routing table use presents a slightly 658 
higher security assurance than the network bridge device solution since the latter allows a 659 
container address to be visible to all containers connected to the bridge. 660 

Another approach to provide network connectivity for containers is to use the MACVLAN 661 
interface [13], which also allows each container to have its own separate link layer address. The 662 
Virtual Ethernet Port Aggregator (VEPA) is the most widely used mode for configuring this 663 
option for isolating the containers. However, complete assurance of network isolation can be 664 
provided at the process level in containers only if the namespace-based approaches are 665 
augmented with mandatory access controls (MAC) and the isolation of the process from other 666 
global namespaces. 667 
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5.2.5 User and Group-level Isolation for Containers 668 

Some processes may need some subset of root privileges. The user namespaces feature can be 669 
used to restrict the privileges of some user IDs to that needed subset. The user namespace 670 
isolates the user and group ID number spaces. In other words, a process's user and group IDs can 671 
be different inside and outside of a user namespace. The most interesting case here is that a 672 
process can have a normal unprivileged user ID outside of a user namespace while at the same 673 
time having a user ID 0 inside of the namespace. This means that the process has full root 674 
privileges for operations inside the user namespace, but is unprivileged for operations outside the 675 
namespace. 676 

Starting in Linux 3.8, unprivileged processes can create user namespaces, which opens a raft of 677 
interesting new possibilities for applications. Since an otherwise unprivileged process can hold 678 
root privileges inside the user namespace, unprivileged applications now have access to 679 
functionality that was formerly limited to root [4]. 680 

5.3 Requirements for Resource Limiting Solutions 681 

The primary protection mechanism for denial-of-service attacks in Linux container environments 682 
is the Cgroups feature that enables setting limits for various resources. The “limits” specification 683 
feature is restricted not only to hardware artifacts such as CPU, memory, and storage, but also to 684 
processes and tasks. In addition to the limits feature, Cgroups enables the designation of a 685 
collection of potential “resource hogging tasks” that can be frozen by sending a SIGSTOP signal. 686 
It can later be unfrozen by sending a SIGCONT signal [11].  687 

In addition to its main role of preventing against denial-of-service attacks, the Cgroups feature 688 
also provides marginal network-level protection with a method (using network classifier Cgroup) 689 
that tags network packets with a “classid” value. This can then be used as a parameter for 690 
filtering certain packets. (The classid value can also be used for priority handling based on 691 
Quality of Service (QoS) requirements, though that feature falls under performance enhancement 692 
and not strictly security.) 693 

The following table provides the list of hardware resources for which the Cgroups feature either 694 
enables setting up of resource limits or access control. 695 

Table 1– Linux Resource Control using Cgroups 696 

Resource “Limit” Feature or Access Control 

CPU Specific number of CPUs or amount of “CPU Shares” for a group of processes 

Memory “Hard” and “Soft” memory allocation units for a group of processes 

BLKIO Set disk read or write speeds, operations per second, queue controls, and wait 
times on block devices designated by major and minor numbers; provides 
more granular access control compared to filesystem specific controls 
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Devices Create a whitelist for devices based on either: (a) Type (character vs block) or 
(b) Major and Minor numbers 

 697 

Cgroups configuration should provide the following assurances: 698 

(a) It should not expose container host information, such as the kernel ring buffer via dmesg, 699 
which can assist in kernel exploitation or information leaks 700 

(b) It should not allow local disk access, even within user namespaces and mount restricted 701 
namespaces via raw disk, device, or mknod access [11]. 702 

 703 
5.4 Requirements for Least Privilege Configuration for Containers 704 

As already mentioned, the Capabilities feature in Linux can be used to partition the set of root 705 
privileges. All container runtime products, such as LXC, Docker, and CoreOS Rkt, come with a 706 
default capability profile where some capabilities for containers are enabled and some are 707 
disabled [11]. Due to the privilege needs of the application running in the container, some of the 708 
defaults have be modified (i.e., some capabilities that have been enabled by default need to be 709 
disabled, and some capabilities disabled by default need to be enabled). However, for most 710 
applications hosted in containers, the following assurance requirements must be satisfied while 711 
configuring the Capabilities feature in Linux:  712 

(a) Capabilities that provide the privilege to manipulate a non-name spaced kernel parameter 713 
(e.g., Sys Time) will have the effect of that parameter modified not only for the container 714 
but also for the host and for all other containers. Hence such capabilities (e.g., 715 
CAP_SYS_TIME) should not be enabled. 716 

(b) Capabilities that provide the broad set of privileges almost equal to that of the root should 717 
not be enabled (e.g., CAP_SYS_ADMIN). 718 

(c) There is no need to enable the capability CAP_SYS_MODULE, which allows for the 719 
loading and unloading of kernel modules as this will lead to insecure privilege escalation. 720 

(d) The Capabilities feature should always be used in conjunction with user namespace as 721 
any privilege escalation to the process due to enabling some Capabilities by error will be 722 
limited to the namespace. 723 

 724 
5.5 Requirements for Device Isolation solutions 725 

In Linux, access to devices is enabled by device nodes, which are special files that provide an 726 
interface to the host device drivers. Device nodes are separated from the rest of the filesystem, 727 
and their nodes are placed in the /dev directory. These nodes are not namespace-aware. The 728 
creation of device nodes is performed by the udevd daemon process issuing the mknod system 729 
call. The permission for a process to create device nodes (for accessing block or character 730 
devices) is provided by the CAP_SYS_MKNOD capability. Containers are given access to device 731 
nodes if the corresponding devices are to be shared among containers or between different 732 
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containers and the host. However, device nodes are security-sensitive since they provide 733 
interfaces to device drivers. These drivers present significant attack vectors because they expose 734 
interfaces (particularly the storage interface) to code running in the kernel space, which may be 735 
abused to gain illegitimate data access, escalate privileges, or mount other attacks. 736 

One possible solution for providing device-level isolation between containers is the use of 737 
“device namespace,” provided the referenced input/output (physical) devices are namespace-738 
aware. Unfortunately, many Linux kernel distributions do not support the device namespace 739 
feature. Where available, this feature can be used to create virtual devices for each container, 740 
which can be multiplexed for access to a physical host device. Further, when Linux device 741 
drivers controlling physical devices are not namespace-aware and the devices assume only one 742 
controlling master host, access privileges for them are hard to securely grant for unprivileged 743 
containers unless the device is used exclusively by a single container. 744 

In the absence of the device namespace feature, two features are utilized for controlling access to 745 
devices for containers. They are: (a) control groups, or Cgroups; and (b) Mandatory Access 746 
Control (MAC) enforcement. The Cgroups subsystem for devices is used to create a whitelist, 747 
formatted for devices based on type (i.e., character vs block) and device major and minor 748 
numbers. The wild card “all” applies to all device types and major and minor numbers, and it is 749 
typically used as a default deny before whitelisting explicit devices [11].  750 

There are two MAC enforcement methods available in Linux environments: Security-Enhanced 751 
Linux (SELinux) and Apparmor. In SELinux, Multi-Level Security (MLS) labels or 752 
classification labels are applied on processes and data/devices, and the system applies fine-753 
grained policy and type enforcement across the different labels. AppArmor is another MAC 754 
system that offers a pathname-based access control (as opposed to filesystem nodes within 755 
SELinux). The restrictions can be aggregated to define a profile for a specific application, 756 
process, or container. A common weakness for all MAC systems is that the controls it provides 757 
can be subverted through direct execution of system calls. 758 

The assurance requirements for device isolation solutions therefore are: 759 

(a) All containers must be prevented from creating new device nodes, and the 760 
CAP_SYS_MKNOD capability should not be enabled for them 761 

(b) All mountpoints inside containers should have the nodev flag set to prevent them from 762 
being used to create files to access device drivers 763 

(c) All containers should only be allowed to access the following set of devices since they 764 
are characterized as safe [4] due to observations given below: 765 

• Purely virtual devices – such as pseudo-terminals and virtual network interfaces; the 766 
security guarantee comes from the fact that these devices are explicitly created for 767 
each container and not shared 768 

• Stateless devices – such as random, null, and others; sharing these devices among all 769 
containers and the host is safe because they are stateless 770 

• User namespace-aware devices – if the device (through the device driver code) 771 
supports verifying capabilities of the process in the corresponding user namespace, 772 
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then such a device can be safely exposed to a container since the specified restrictions 773 
will be enforced 774 

(d) When Cgroups and MAC enforcement systems are both used for controlling access to 775 
devices, care should be taken to ensure that their respective rules do not create conflict. 776 

 777 
5.6 Requirements for Container Launching Options  778 

Every container runtime product has a command to launch containers that carry many options. 779 
The assurance requirements associated with the secure use of this command are stated as a set of 780 
options that should be avoided [4]. As a best security practice, containers should not use options 781 
that will enable sharing any namespaces associated with the container host when launched [11]. 782 
If this is not the case, it may not only enable the container to view the resources/objects 783 
associated with that namespace but also manipulate those resources/objects by subverting the 784 
isolation provided by static configuration of namespaces for the container. The following table 785 
provides the list of namespaces for which sharing the corresponding host counterpart should not 786 
be used in the container launch options. 787 

Table 2 – Prohibited Options for Container Launching 788 

Namespace/ Example 
Resource-Object Brief Description Security Threat 

UTS All containers are assigned 
their own UTS namespace 
and thus have no need to 
know the UTS namespace of 
the host 

Processes within the 
container can see and 
manipulate the hostname and 
domain of the host 

IPC/ Shared Memory 
Segment 

Shared Memory segments for 
inter-process communication 
between application modules 
are set up for faster 
communication as they are 
faster than REST API calls 

Processes within the 
container can see and 
manipulate host IPC object 

Filesystem Host-sensitive directories 
should not be mounted in 
read-write mode as container 
volumes 

Gives containers the ability to 
modify the files in those 
directories with a potential to 
jeopardize host security 

Setting net=host in the 
container launching 
command 

The networking mode for the 
container should not be set 
equal to host 

This will give privileges to a 
container that only a host 
should have (e.g., shutting 
itself down) or access to 
networking services that only 
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Namespace/ Example 
Resource-Object Brief Description Security Threat 

the host needs 

Publishing container ports to 
the host  

This is done for setting up 
communication to and from 
that container 

The default option of 
publishing to all interfaces 
should not be used; by 
specifying the interface that 
the port should bind to 
explicitly, traffic into and 
from the container is 
restricted to the given 
interface 

Inter-container 
communication 

If it exists, the option to 
enable blanket inter-container 
communication must not be 
enabled; instead, explicit 
communication channels 
must be set up between two 
containers that need to 
communicate. 

Any compromised container 
can attack any other container 
on the host 

 789 

In addition to container launch options that involve objects shared with the host, there are some 790 
parameters exclusively applicable to the container that should be set when launching containers. 791 

(a) Containers should always be launched with a specific memory limit to prevent denial-of-792 
service attacks or certain applications leaking memory that may eventually consume all 793 
the memory on the host 794 

(b) Containers should always be launched by specifying the number of CPU shares. The 795 
default value (Total CPU/number of containers) may not be sufficient for some 796 
containers, resulting in denial of service. The number of CPU shares assigned to a 797 
container should be such that no container can starve others with default settings. Further, 798 
if there exists a group of containers that dominate others in CPU usage, then a lower 799 
default value should be assigned to containers in that group to ensure fair distribution of 800 
CPU shares. 801 

(c) If the host OS Linux distribution supports a MAC system (e.g., SELinux), a policy 802 
template should be set up, the container engine should be started with an option to 803 
recognize the template, and the container launching API should have an option to 804 
recognize the policy template parameter and include it as part of the launch parameter. 805 
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(d) Containers should be launched only with “required” capabilities by initially dropping all 806 
capabilities and then adding only the required ones. The following capabilities in general 807 
should not be present (i.e., NET_ADMIN, SYS_ADMIN, SYS_MODULE).808 
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6 Assurance Requirements for Image Integrity Solutions 809 

The integrity of the container images is of paramount importance since they are converted to 810 
running instances, some of which may host mission-critical applications. The image 811 
countermeasures covered in the Container Security Guide include recommendations for 812 
monitoring images for malware and other vulnerabilities, proper image configuration, separating 813 
secrets from image files, and ensuring trust in images through cryptographic signatures and 814 
regular updates. The security solutions needed for carrying out these recommendations should 815 
include the following assurance requirements: 816 

(a) There should exist a means to create metadata linking each image to its base image 817 

(b) There should exist a feature to rebuild the image automatically if the linked base image 818 
changes [6] 819 

(c) When any changes are made to the base image or dependent image (e.g., patching a 820 
vulnerability), changes should not be made to the running containers. Instead, the 821 
corresponding image should be recreated and the container re-launched using the 822 
modified image. Thus, a single master, or golden image, is to be maintained for any 823 
service. 824 

(d) When employing “image signing” solutions for digitally signing and uniquely identifying 825 
each image, the following requirements should be met [6]:  826 

1. There should be a robust key management to minimize the possibility of key 827 
compromise. One approach is to have a PKI system that issues a certificate to each 828 
developer exclusively for signing the image. The private key associated with this 829 
certificate will then be the “signing key” that is used to sign all container images in a 830 
repository.  831 

2. Replay attacks must be mitigated by embedding expiration timestamps in signed 832 
container images. Alternatively, a special key can be used to sign the metadata for 833 
the repository, ensuring that the images in the repository do not contain stale 834 
versions of the image with valid signatures. 835 

(e) In addition to creating a unique identifier for an image using digital signatures, the 836 
integrity of individual components of the image can be ensured by using labels such as 837 
key/value pairs for each component. 838 

(f) Images should be built such that the application(s) in them are not used for any privilege 839 
escalation attacks. This can be achieved by disabling the chmod a-s command, which 840 
removes the suid bit, or removing setuid and setgid binaries in them [6].841 
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7 Assurance Requirements for Image Registry Protection 842 

The suggested registry countermeasures in Container Security Guide include developing secure 843 
connections to registries and ensuring that they do not contain out-of-date vulnerable images by 844 
pruning them out through an automated process or controlling their accidental deployment 845 
through use of discrete version numbers. Some assurance requirements unrelated to these 846 
countermeasures yet still critical to processes involving creating, posting, and removing images 847 
into and from registries are: 848 

(a) The number of accounts accessing the registry must be limited since the common threat 849 
in some environments is account hijacking when a diverse set of clients has access to a 850 
container registry. One such environment is the registry maintained by cloud service 851 
providers who offer container services. 852 

(b) The permission to create container image registries and add or remove content to 853 
registries must be cryptographically protected.854 
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8 Assurance Requirements for Orchestration Functions 855 

The use of an Orchestration platform (consisting of a suite of tools) in a containerized 856 
infrastructure is intended to perform the following functions: 857 

• Enable the definition of a cluster (a named group of container hosts that can be managed as a 858 
single entity) and schedule containers into the cluster. The cluster configuration should 859 
support specification of parameters such as the amount of CPU/Memory to reserve, the 860 
number of replicas (i.e., duplicate copies of same container to be run), and the circumstances 861 
under which a container should continue to run or be taken offline. 862 

• Enable automated deployment of containers in various clusters/hosts (container scheduling). 863 
This is achieved by integrating various automation tools to execute automation scripts as part 864 
of an orchestrated workflow and to obtain feedback and status results for those automation 865 
tasks. This kind of integration depends on the interfaces that the automation tools provide 866 
and the type of formats (open or closed) that they follow [14]. 867 

• Provisioning, or defining new container hosts and attaching them to existing clusters 868 

The suggested orchestration countermeasures in the Container Security Guide include granular 869 
access control of administrative actions based on hosts, containers and images as parameters, use 870 
of enterprise-grade authentication services using strong credentials and directories, and isolating 871 
containers to separate hosts based on the sensitivity level of the applications running in them. In 872 
addition to these countermeasures, the orchestration artifacts should satisfy the following 873 
security assurance requirements: 874 

(a) Clusters should have capabilities for logging and monitoring the resource consumption 875 
patterns of individual containers to avoid unanticipated spikes in resource usage leading 876 
to non-availability of critical resources 877 

(b) The Orchestration platform must be usable on containerized infrastructures with more 878 
than one host OS. In other words, the orchestration tools used must be container-host OS-879 
neutral. Using different tools for different container host OS platforms increases the 880 
probability of denial-of-service attacks in those environments since the enterprise is not 881 
able to obtain a global picture of resource usage for all running containers in the entire 882 
containerized infrastructure of the enterprise. 883 
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9 Adverse Side effect of some Security Solutions 884 

While discussing a security solution (e.g., using mount namespace) in the context of a security 885 
objective (i.e., filesystem isolation), certain augmenting solutions are recommended since the 886 
solution under discussion cannot meet the objective by itself. However, there are some security 887 
solutions that, irrespective of any augmenting controls, impose certain limitations on the 888 
functionality and performance of certain container functions. Despite their direct impact 889 
affecting only functional and performance aspects, they may have an indirect impact on certain 890 
security parameters. These are discussed below. 891 

9.1 Resource Limiting using Cgroups 892 

The use of Cgroups to limit resource access for processes/containers is included as a security 893 
solution because of its potential to mitigate the chances of denial-of-service situations. The Linux 894 
control groups (Cgroups) subsystem is used to group processes and manage their aggregate 895 
resource consumption. It is commonly used to limit the memory and CPU consumption of 896 
containers. A container can be resized by simply changing the limits of its corresponding 897 
Cgroup. However, processes running inside a container are not aware of their resource limits [2]. 898 
For example, a process can see all the CPUs in the system even if it is only allowed to run on a 899 
subset of them; the same applies to memory. If an application attempts to automatically tune 900 
itself by allocating resources based on the total system resources available, it may over-allocate 901 
when running in a resource-constrained container, thus resulting in denial-of-service to other 902 
applications within the same container [2]. 903 

9.2 Syscall filters using Seccomp 904 

Setting up system call filters (with whitelist and blacklist) using Seccomp is used as a security 905 
solution since system calls are not namespace-aware (ruling out the use of the namespaces 906 
feature), though in the presence of malicious processes, this can introduce accidental leakage 907 
between containers. However, the choice of system calls to be allowed is based on a current set 908 
of applications in the container, and this security solution has the potential to introduce 909 
application incompatibility since applications can be migrated between containers for load-910 
balancing reasons.911 
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10 Summary and Conclusions 912 

The security solutions analyzed in this document can be summarized as follows: 913 

(a) Providing authenticity and attestation of integrity for software components of a container 914 
stack such as Linux (Host OS), container runtime, and the containers using hardware-915 
based root-of-trust solutions such as TPM and vTPM 916 

(b) Hardware-based protection for shielding one container from another as well as containers 917 
from higher privileged software, such as Linux kernel, using the safe execution model 918 
provided by hardware architecture (e.g., Intel SGX) 919 

(c) Linux kernel features (Namespaces, Cgroups, Capabilities) and loadable kernel module 920 
(LKM) features for protection of the Linux kernel itself and for protecting one container 921 
from another 922 

(d) Protection measures for container runtime, container images, container registry, and 923 
container orchestration tools. 924 

The conclusion from the analysis is that every security solution must satisfy some security 925 
assurance requirements to effectively provide necessary and sufficient security guarantees.926 
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Appendix A—Acronyms  927 

Selected acronyms and abbreviations used in this paper are defined below. 928 

EPC 

IPC 

MAC 

MEE 

NAT 

PID 

PKI 

SGX 

TPM 

UDP 

UTS 

VM 

VNI 

Enclave Page Cache 

Inter-process Communication 

Mandatory Access Control 

Memory Encryption Engine 

Network Address Translation 

Process ID 

Public Key Infrastructure 

Software Guard eXtensions 

Trusted Platform Module 

User Datagram Protocol 

UNIX Timesharing System 

Virtual Machine 

Virtualized Network Interface 

929 
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